Want to post a buying lead? If you are not a member yet, please select the specific/related part number first and then fill the quantity and your contact details in the "Request for Quotation Form" on the left, and then click "Send RFQ".Your buying lead can then be posted, and the reliable suppliers will quote via our online message system or other channels soon.
The TPS4009x family are two-, three-, or four-phase programmable synchronous buck controllers, optimized for low-voltage, high-current applications powered by a 5-V to 15-V distributed supply. A multi-phase converter offers several advantages over a single power stage including lower current ripple on the input and output capacitors, faster transient response to load steps, improved power handling capabilities, and higher system efficiency.
Each phase can be operated at a switching frequency up to 1-MHz, resulting in an effective ripple frequency of up to 4-MHz at the input and the output in a four-phase application. A two phase design operates 180 degrees out-of- phase, a three-phase design operates 120 degrees out of phase, and a four-phase design operates 90 degrees out of phase as shown in Figure 1.
The number of phases is programmed by con−necting the de-activated phase PWM output to the output of the internal 5-V LDO. In two-phase operation the even phase outputs should be de-activated.
The TPS4009x uses fixed frequency, peak current mode control with forced phase current balancing. When compared to voltage mode control, current mode results in a simplified feedback network and reduced input line sensitivity. Phase current is sensed by using either current sense resistors installed in series with output inductors or, for improved efficiency, by using the DCR (direct current resistance) of the filter inductors. The latter method involves generation of a current proportional signal with an R-C circuit (shown in Figure 10.
The R-C values are selected by matching the time constants of the R-C circuit and the inductor; R-C = L/DCR. With either current sense method, the current signal is amplified and superimposed on the amplified voltage error signal to provide current mode PWM control.
An output voltage droop can be programmed to improve the transient window and reduce size of the output filter. Other features include a single voltage operation, a true differential sense amplifier, a programmable current limit, soft-start and a power good indicator.
TPS40090 Features
Two-, Three-, or Four-Phase Operation 5-V to 15-V Operating Range Programmable Switching Frequency Up to 1-MHz/Phase Current Mode Control With Forced Current Sharing(1) 1% Internal 0.7-V Reference Resistive Divider Set Output Voltage True Remote Sensing Differential Amplifier Resistive or DCR Current Sensing Current Sense Fault Protection Programmable Load Line Compatible with UCC37222 Predictive Gate Drive Technology Drivers 24-Pin Space-Saving TSSOP Package TPS40090: Binary Output TPS40091: Tri−State Output
TPS40090 Typical Application
Internet Servers Network Equipment Telecommunications Equipment DC Power Distributed Systems