Features: • 0.5 MICRON CMOS Technology• Typical tSK(o) (Output Skew) < 250ps• ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)• VCC = 3.3V ± 0.3V, Normal Range• VCC = 2.7V to 3.6V, Extended Range• VCC = 2.5V ± 0.2V...
41000: Features: • 0.5 MICRON CMOS Technology• Typical tSK(o) (Output Skew) < 250ps• ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)•...
SeekIC Buyer Protection PLUS - newly updated for 2013!
268 Transactions
All payment methods are secure and covered by SeekIC Buyer Protection PLUS.
Symbol |
Rating |
Max
|
Unit |
VTERM (VDD) |
VDD Terminal Voltage with Respect to GND |
0.5 to +4.6 |
V |
VTERM(2) |
VDDQ Terminal Voltage with Respect to GND |
0.5 to VCC+0.5 |
V |
VTERM(2) (INPUTS and I/O's) |
Input and I/O Terminal Voltage with Respect to GND |
65 to +150
|
°C |
IOUT |
DC Output Current |
50 to +50
|
°C |
TSTG |
Continuous Clamp Current, VI < 0 or VI > VCC |
-65 to +150
|
mA |
TJN |
Junction Temperature |
+ 150
|
mA |
IOK |
Continuous Clamp Current, VO < 0 |
-50
|
mA |
ICC ISS |
Continuous Current through VCC or GND |
±100
|
mA |
NOTES:
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. VCC terminals.
3. All terminals except VCC.
This ALVCH16245 16-bit bus transceiver is built using advanced dual metal CMOS technology. The ALVCH16245 is designed for asynchronous communication between data buses.
The control-function implementation minimizes external timing requirements.
This ALVCH16245 can be used as two 8-bit transceivers or one 16-bit transceiver. It allows data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (OE) input of the ALVCH16245 can be used to disable the device so that the buses are effectively isolated.
The ALVCH16245 has been designed with a ±24mA output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.
The ALVCH16245 has "bus-hold" which retains the inputs' last state whenever the input bus goes to a high impedance. This prevents floating inputs and eliminates the need for pull-up/down resistors.