Published:2009/7/16 21:40:00 Author:Jessie | From:SeekIC
This figure illustrates a way in which a momentary 10-kV voltage pulse can be generated to initiate the plasma discharge across the laser tube. A Diode voltage-multiplier circuit is connected in series with the main supply and obtains its input power across one of the voltage-multiplier diodes in the main supply. The voltage across this diode is typically 1.8 kV p-p With a ten-section multiplier, the output voltage is approximately 9 kV in series with a 1.8-kV sustaining supply. The capacitors value of the capacitors in the multiplier chain is much smatter than that of the capacitors for the main supply. When the power supply is first turned on, the capacitors in the voltage multiplier charge up to the ignition voltage. As the plasma forms, the laser tube draws more current and the multiplier capacitors cannot maintain their charge. As a result, the voltage immediately drops to that of the main sustaining supply, with all the diodes in the multiplier chain forward-biased. In this manner, an HV pulse is generated to ionize the gases.
Reprinted Url Of This Article:
http://www.seekic.com/circuit_diagram/Power_Supply_Circuit/HELIUM_NEON_LASER_SUPPLY_WITH_HV_MULTIPLIER_IGNITION.html
Print this Page | Comments | Reading(3)
Code: